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Structural Relaxation in Dense Hard-Sphere Fluids 
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The long-time decay of the shear-stress autocorrelation function is shown to be 
quantitatively related to the decay of correlations between the orientation of 
"bonds" connecting colliding pairs of particles. Within computational uncertain- 
ties, we find that orientational correlations in high-density fluids decay as a 
"stretched" exponential in time, with an exponent that is independent of density. 
However, at low densities the decay is exponential. In two-dimensional systems 
the decay is exponential, even at high density. 
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This article, dedicated to Prof. I. Prigogine, is concerned with correlation 
or memory effects in an irreversible phenomena that so far has defied 
theoretical analysis. There seem to be only two prominent memory effects 
in simple fluids. The one associated with diffusion results from a positive 
feedback of the momentum of a particle via vortex formation in the 
surrounding fluid, and is well characterized. (1~ A hydrodynamic analysis led 
to a universal power-law decay of the velocity correlations, with a power 
that depended only on dimensionality. The memory  effect associated with 
the slow decay of the shear-stress autocorrelation function at high density, 
which leads to viscoelastic behavior and ultimately to glass formation, is 
not well understood. We have undertaken some computer experiments to 
delineate the nature of this memory  effect, to help define the physical 
processes involved, and in particular to establish whether this phenomena 
has any universal characteristics. We have previously shown that the 
mechanism for the slow decay of the potential contributions to the shear 
viscosity differs from the hydrodynamic effects that cause the long-time 
tails in kinetic correlation functions. (2~ The slowly decaying potential 
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contribution to the shear-stress autocorrelation function has been called 
the "molasses" tail, (3~ to differentiate it from the hydrodynamic origin of 
the kinetic tails, and to emphasize its relation to the highly viscous glassy 
state. It is limited to high-density fluids close to the solid-liquid transition. 
Our approach to understanding the glass transition focuses on the rapidly 
increasing time scale for the decay of angular xy correlations in high- 
density liquids close to the glass transition point. Other work has focused 
on the growth of higher order angular correlations in-supercooled 
monatomic liquids. (4'sl 

A quantitative relationship between the decay of the collisional 
contributions to the shear stress and the orientational (xy) correlations of 
"bonds" linking colliding pairs of particles has been established at long 
times and high densities. (2) The transverse momentum current J~y (equal to 
minus the product of the shear stress and the volume) in a hard-sphere 
fluid of particles of mass m contained in a volume V can be written as a 
sum of kinetic and potential contributions, 

J~K~. = Y, mxi Yi (1) 
i 

J~,.=~. (-mrij  " vii)xiJyi;-7- 6 ( t -  t,) (2) 
c ~1 

The potential contribution occurs only at the collision times t~., because of 
the impulsive hard-sphere interaction. The vector rij connects the centers of 
the colliding pair, and vii = v i - v j  is the relative velocity before collision. It 
is known that the correlation function of the normal momentum transfer 
decays rapidly, t6) so that beyond about three mean collision times 
( -mr~j .  vij ) can be replaced by its average value, (7~mkTaZ) m, where k is 
Boltzmann's constant, T is the temperature, and ~ is the collision diameter. 
This leads to a factorization in Eq. (2), and implies that a quantitative 
relationship exists, at long times, between the shear-stress autocorrelation 
function and orientational correlations between colliding pairs of particles, 
i.e., 

(J~(t)  J~,(O) ) = 7zmkTaZ(K~y(t) Kxy(O) ) (3) 

where the orientational factor Kxy is given by 

K~y = y~ ~x~ a ( t -  t:) (4) 

The factorization assumption has been verified over a range of high-density 
liquid states by comparing the left- and right-hand sides of Eq. (3). A 
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typical result is shown in Fig. 1 at V/Vo = 1.6, where V 0 is the volume at 
close packing. As expected, the correlation functions in Eq. (3) are 
statistically indistinguishable after about ten mean collision times. This is 
strong evidence that the "molasses" tail is structural rather than 
hydrodynamic in origin. The factorization of the cross correlation between 
the kinetic and potential contributions, namely 

K t (Yxy( ) J ey(O)) = (umkTa2) 1/2 K (JUt) K~(o) ) (5) 

was also found to hold, within statistical accuracy, beyond about ten mean 
collision times. Factorization holds at densities up to about V/Vo=2, 
beyond which the "molasses" tail is too weak to be measured. It is most 
clearly established at the highest densities where the tail is strongest. 
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Fig. 1. Comparison of the collisional shear stress and orientation autocorrelation functions 
at V/Vo=I.6. The logarithms of the correlation functions s and 
(TrmkT~2)(Kv.(t) K~).(O)) plotted against the logarithm of the time are shown for 500 hard 
spheres after l0 s collisions. The time is measured in units of the mean collision time 
r =0.0321(ma2/kT) m, and q~ =2.63(mkT)m/a 2 is the Enskog shear viscosity. The viscosity 
obtained from integrating the total shear-stress autocorrelation function (J~y(t)Jay(0))  out to 
25 mean collision times is 1.4&/e , in good agreement with earlier resultsJ a,7~ The error bars, 
indicated by vertical lines, are comparable for both correlation functions. The vertical arrow 
indicates the sound-wave traversal time. 
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The very slow structural relaxation in glasses has recently been 
investigated using the concept of "hierarchically constrained dynamics. ''18~ 
The orientation of a pair of particles at high density is locked (grid-locked) 
until an appropriate arrangement of neighbors is achieved. Local structural 
relaxation is expected to be slowest, because the unlocking of a large orien- 
tationally ordered cluster starts at the outside and proceeds inward toward 
the center. This idea can be tested in detail by molecular dynamics. One 
such test is the nature of the decay of the autocorrelation function. The 
model predicts a "stretched" exponential form for the relaxation, 
exp[-(t/to)~], which is often used to represent dielectric and viscous 
relaxation in dense liquids/9'1~ The data in Fig. 1 can be fitted quite well, 
though not uniquely, by this same functional form. 

A stringent test for "stretched" exponential behavior is to plot the data 
as shown in Fig. 2. For  a "stretched" exponential the quantity -ttS/p, the 
normalized decay rate, is proportional to t ~, so that the logarithm of that 
quantity plotted versus the logarithm of the time has a slope :~, that is, the 
value of the "stretched" exponent. The question is then whether this slope 
can be readily distinguished from a power-law decay of the correlation 
function, in which case the slope would be zero, or a purely exponential 
decay of the correlation function, in which case the slope would be unity. 
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Fig~ 2. Collisional contribution to the shear-stress autocorrelation function at V/Vo= 1.& 
The logarithm of the normalized decay rate (-t~/p) plotted against the logarithm of the time 
is shown for 500 hard spheres after 10 g collisions. The slopes for exponentially and 
algebraically decaying functions are indicated in the lower right-hand corner. The sound 
traversal time is indicated by the vertical arrow, and data points occurring after this time are 
shown by open circles. 
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These slopes are indicated in Fig. 2. Even after an extensive run just below 
the freezing density where the "molasses" tail is most pronounced, the 
statistical errors are large, magnified, especially at long times, by the added 
differentiation. Moreover, the correlations are perturbed by effects, so far 
unanalyzed, arising from the propagation of sound waves across the 
periodic cell. Thus we cannot rule out an exponential decay, as predicted 
by extended mode-coupling theories] "'J2) or even a power-law decay for 
times prior to the sound traversal time. 

Although Fig. 2 gives weak indication of "stretched" exponential 
behavior, more definitive results were sought by decomposing the four- 
particle correlation function <Kxy(t)Kxp(O)> into pair, triplet, and 
quadruplet contributions, as had been done previously for the dipole- 
induced-dipole correlation function/13'14) In that case, the individual 
pair, triplet, and quadruplet contributions were an order of magnitude 
larger than the total, both in amplitude and in relaxation time. Symmetry 
arguments led to near cancellation of the three individual terms in the 
formation of the sum that represents the total autocorrelation function. 
Furthermore, extensive analysis of experimental data suggest that the decay 
of angular correlations in dielectric and viscous relaxation are similar. (j~ 
A similarity has also been noted in comparisons, by computer simulation, 
of the dipole-induced-dipole and shear-stress autocorrelation functions. ~16) 
Indeed, the decomposition of the orientation autocorrelation function was 
found to be quite analogous to the depolarized light scattering simulations 
and thus advantage could be taken of the long relaxation time of the 
individual contributions to establish the functional form of the relaxation, 
as shown in Fig. 3. Pair correlations can be followed for times 
corresponding to a decay of more than three orders of magnitude and are 
essentially exactly factorizable, in the manner of Eq. (3), over that time 
span. The orientational pair correlation function is defined as 

- K~v(t ) 
/92(t)  Vt/E i i / 

where K!~', is the contribution to K~y arising solely from collisions between 
the /j pair. To be consistent with the local structural arguments presented 
before, the pair correlation should have a much longer relaxation time than 
the total, and should not be sensitive to the size of the system. Both of 
these hypotheses are substantiated. Most importantly, the pair correlation 
gives a strong indication of being neither exponential nor algebraic (power 
law), but a "stretched" exponential, exp[-(t/t2)~], with a least squares 
"stretched" exponent of c~ = 0.73. 

Furthermore, for other high-density fluid states, the pair correlations 
yielded the same "stretched" exponent, within the statistical error bars, 
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Fig, 3. Pair orientation autocorrelation function at V/Vo= 1.6. The logarithm of the 
normalized decay rate (-hO2/p2) plotted against the logarithm of the time are shown for 108 
and 500 hard spheres. The "stretched" exponent c~ = 0.73 and relaxation time t2--41.0z were 
determined by least squares fitting. 

when plotted in a manner similar to Fig. 3, i.e., ~ = 0.73 _+ 0.03. No 
systematic variation of the "stretched" exponent could be established for 
densities above V / V  o = 2, although the relaxation times t 2 vary by an order 
of magnitude over this density range. The insensitivity of the "stretched" 
exponent is shown in Fig. 4 by using a universal value of ~=0.73 in 
plotting -t2152/o:p2 versus (t/t2) ~-~ over a range of high-density states. 
Conformity to a single "stretched" exponent is indicated by the fit to the 
straight line that passes through the origin with a slope of one. Considering 
that the data at the longest times have statistical uncertainties larger than 
the deviations from this straight line, the universality of the "stretched" 
exponent is a tentatively acceptable hypothesis. 

Moreover, the decay of the self-correlation function, which is a 
combination of pair and triplet correlations, (~4) 

o , ( t )=  ( K ,It) 
j , k ~ i  

(7) 

is also consistent with the same "stretched" exponent at several high 
densities, as shown in Fig. 5. The results are more scattered than in the pair 
case because the cancellation of pair and triplet correlations increases the 
statistical errors, but not to the same extent as in the total. This 
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Fig. 4. Pair orientation autocorrelation function at high densities. The decay rate (-~2/c~p2) 
is normalized by the density-dependent pair relaxation time t 2 instead of by t. The time is 
measured in units of the pair relaxation time also. The "stretched ~' exponent c~ was assigned 
the value of 0.73 at all densities. The relaxation time t2 used at each density is shown. 

cancellation also means that the self-correlation function decays much 
faster than the pair, as indicated by the relaxation times shown in Figs. 4 
and 5. In fact, the relaxation of self-correlations is comparable to, though 
not as fast as, the relaxation of the total. 

Although the universality hypothesis is consistent with the decay of all 
the correlation functions at high density, it cannot  be checked at lower 
densities, because the correlations decay too rapidly. This is shown in 
Fig. 6, where even the pair correlation at V/Vo = 5 is consistent with a 
purely exponential decay. One might surmise that at lower densities a 
different mechanism decorrelates the orientation of the "bonds" connecting 
colliding pairs of particles, namely, they might just diffuse apart. Such a 
mechanism would start to become important  at V/V o = 3, where the mean 
distance between particles is comparable to the diameter of the spheres. 
Such a pair diffusion mechanism would be expected to lead to a power-law 
decay of the correlations when analyzed by a hydrodynamic (diffusion) 
model. A preliminary run at V/Vo=3 could possibly be interpreted as 
going from "stretched" exponential at intermediate times to a power-law 
decay at long times. However, at this stage the statistical errors are too 



1 1 5 4  L a d d ,  A l l e y ,  a n d  A l d e r  

1 . 5 - -  

1.0--  
,o-  

'7, 

0.5 

I 1 
�9 VtV o = 1 . 5  t s =12 .0 r  N = 5 0 0  
�9 V N  o = 1 . 6  t s = 6.81: N = 1 0 8  
�9 V/V o = 1 . 8  t s = 3.1~: N = 1 0 8  

c~ = 0.73 

~mo2~ ij Kik 
<[~ Kv, ' (t) xy (o)~) Ps (t) = V~ i - I  

E j , k ~ i  
& / 

/ 

�9 & � 9  
Am 

�9 �9 �9149 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ �9 

/ 

f �9 & 
I I  A 

I I 
0.5 1.0 

(t/ts )a -1 

Fig. 5. Self-orientation autocorrelation function at high densities. The decay rate (-~s/eps) 
is normalized by the density-dependent self-relaxation time t, instead of by t. The time is 
measured in units of the self-relaxation time also. The "stretched" exponent c~ was assigned the 
value of 0.73, as for the pair orientation correlation functions. The relaxation time t, used at 
each density is shown. 

large to allow any meaningful conclusions. At V/Vo = 5 such a power-law 
decay is lost in the noise. 

Any possible universality of the "stretched" exponent is not derived 
from a hydrodynamic mechanism. This is indicated in Fig. 7, where it is 
shown that in two dimensions, the decay of pair correlations is 
qualitatively different from that in three dimensions. The pair correlations 
are observed to be purely exponential at a high density near solidification 
and not just a "stretched" exponential with a different exponent, unless 

= 1 is considered to be a special case of a "stretched" exponential. Rather, 
the results are consistent with the experimental observation that glass 
formation has not been observed in two dimensions, presumably because 
the grid-lock mechanism is not operative. 

These computer experiments have suggested that the "stretched" 
exponent characterizing high-density orientational relaxation is universal. 
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Fig. 6. Pair orientation autocorrelation function at V/Vo=5. The logarithm of the nor- 
malized decay rate (-t~2/P2) is plotted against the logarithm of the time for 108 hard spheres. 
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Fig. 7. Two-dimensional pair orientation autocorrelation function at A/Ao=I.4. The 
logarithm of the normalized decay rate (-tt~2/P2) is plotted against the logarithm of the time 
for 504 hard disks. 
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To confirm this hypothesis  more  extensive runs are required. These runs 
should  reduce the uncer ta in ty  in the "s t re tched"  exponent  to abou t  0.01 
and thus de termine  whether  or  not  the exponent  is (weakly)  dens i ty-depen-  
dent. Fu r the rmore ,  it might  be possible  to establ ish the existence of a 
h y d r o d y n a m i c  tail near  V / V o =  3. To establ ish the successive unlocking  
mechanism,  we in tend to resolve the to ta l  cor re la t ion  funct ion as a function 
of the d is tance  between the centers of mass  of the col l iding pairs  at  t ime t 
and  at t ime 0. This  will not  only  de te rmine  the spat ia l  range of the angular  
corre la t ions ,  but  also whether  the closer-in pairs  have longer  re laxa t ion  
times. Final ly ,  we want  to re turn  to the depo la r ized  l ight scat ter ing 
problem,  to s tudy the decay of these o r ien ta t iona l  cor re la t ion  functions in 
more  detail ,  and  see whether  they, too, have a "s t re tched" exponent ia l  
decay,  poss ibly  with the same "s t re tched"  exponent  as the "molasses"  tails. 
Once these facts are well es tabl ished for this very simple system, it is hoped  
that  a theory  can be deve loped  to predict  ana ly t ica l ly  the "s t re tched"  
exponent ,  by inco rpora t ing  the physical  mechan i sm for the slow s t ructura l  

re laxat ion.  
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